
© Giuliana Carullo 2020
G. Carullo, Implementing Effective Code Reviews,
https://doi.org/10.1007/978-1-4842-6162-0_3

C H A P T E R

3

Data Structures
It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.

—Sherlock Holmes, “A Study in Scarlet” (1877)

Data structures are often not analyzed as carefully as a software architecture
would have been, but they definitely have their spot on the stage. Choosing
them correctly has a lot of benefits, including

•	 Readability since the wrong data structures can make the
code more complex than what actually required.

•	 Better design because they are strictly related to project’s
requirements:

•	 How data can be better organized?

•	 How to improve performances?

•	 Are there any memory constraints?

•	 Fun: yes, you’ll have a lot of fun with them.

In this chapter, we will introduce common data structures and how to evaluate
them in the overall grand scheme of designing clean code.

https://doi.org/10.1007/978-1-4842-6162-0_3#DOI

28

 Introduction to Data Structures
Table 3-1 shows some of the main data structures with relative average time
complexity for basic operation (i.e., access, insert, delete, search).

Table 3-1. Time Complexity

Data Structure Access Insert Delete Search

Array O(1) O(n) O(n) O(n)

Linked list O(n) O(1) O(1) O(n)

Doubly linked list O(n) O(1) O(1) O(n)

Queue O(n) O(1) O(1) O(n)

Stack O(n) O(1) O(1) O(n)

Hash map Constant (avg) O(1) O(1) O(1)

Binary search tree O(n log n) O(n log n) O(n log n) O(n log n)

Taking into account the performances of a given data structure should not be
an afterthought. And it matches well the good-design way of proceeding. The
more suitable the data structures, the more optimized, effective, and efficient
the design is.

 ■ Refresher Asymptotic analysis (as shown in Table 3-1) allows to express time performances

in the context of the size of the data (i.e., the number of elements). In short, if an operation always

takes the “same” amount of time (i.e., not dependent on the size of the data), we say that it has

constant time and we refer to it as O(1). If an operation scales logarithmically with the data size, we

refer to it as O(log n). If an operation scales linearly with the data size, we say that it runs in linear

time and we refer to it as O(n). Operations can also scale in polynomial (e.g., O(n2)) and exponential

(e.g., O(2n)) time. Always try to understand if and how polynomial and exponential operations can

be optimized.

Some indicators that can be used to evaluate which data structure is
appropriate or not are

•	 Data size

•	 Does the data changes and how often?

•	 Are search and sorting operation frequent?

Chapter 3 | Data Structures

29

 ■ Note When reasoning around data size, do not focus only on the problem at hand. Try to look

at possible future cases and how data might possibly scale over time. This would help not only in

considering data in the context at hand but also spotting any limiting or better options in terms of

runtime.

A very well-known principle, which can be applied to data structure as well,
is the Pareto principle, also known as the 80/20 principle. This principle states
that 20% of causes generate 80% of the results.

As you will read in the rest of the chapter, every data structure comes not
only with a general context that might suit them better. They also come with
different runtimes for common operation (e.g., adding and deleting elements).
To pick and validate data structure, one of the approaches you can explore is
to think about the 80% of operations that you need to perform on a given set
of data and evaluate which data structure would be the most performant
(runtime) data structure to use in such context.

 ■ Pareto Example Consider a scenario where 80% of operations are given by adding and

searching elements in a data structure. As from Table 3-1, you can start confronting time complexity.

Would it be optimal to use a linked list with O(n) search? Definitely not. By using HashMaps, you

could have a better running time since by design HashMaps suit really good searching operations

with a constant average runtime.

Let’s go through the pros and cons of each data structure.

 Array
The array data structure is probably the simplest one. It is a collection of
elements that can be accessed by means of indexes. Arrays can be linear (i.e.,
single dimension) or multidimensional (e.g., matrixes). Figure 3-1 shows a
representation of this data structure of size n.

Implementing Effective Code Reviews

30

 ■ Refresher Each box in Figure 3-1 represents an element within the array, each of which with

a relative position within the array. Position counting always starts at 0.

Basic arrays are fixed in size, which is the size declared during initialization.
They support only a single type (e.g., all integers).

In Python, array declaration can be performed as

from array import *
a = array('i', [1,2,3])

where the first parameter ‘i’ specifies the typecode, which in the specific case
refers to signed integers of 2 bytes. The second parameter provides initializers
for the given array.

Some languages support dynamic sizing as well as different data types. It is the
case, for example, of Python where the following code will be fine:

array = [1, "string", 0.2]

and all the types are properly managed:

type(array[0])
>>> <type 'int'>

type(array[1])
>>> <type 'str'>

type(array[2])
>>> <type 'float'>

 ■ Note As you might have noted already from the first snippet of code, the array requires the

import of the standard module “array.” This is because Python does not natively support arrays.

Other libraries, including NumPy, also provide their own implementation of arrays. However, it is

pretty common to use Python lists in day-to-day code instead of arrays due to their flexibility.

Figure 3-1. Array

Chapter 3 | Data Structures

31

They come with several pros and cons.

They are fairly easy to use and—as shown in Table 3-1—they provide direct
access by means of indexes, and the entire list of elements can be accessed
linearly in O(n), where n is the number of elements into the list.

However, inserting and deleting items from the list are more computationally
expensive due to shifting operation required to perform these operations. As
a worst-case scenario, to better understand why it happens, consider deleting
the first element of the list which is at index = 0. This operation creates an
empty spot; thus all the items from index = 1 need to be shifted one position
backward. This gives us a complexity of O(n). Analogous considerations are
for insertion.

 Linked List
A linked list is a collection of nodes, where each node is composed of a value
and a pointer to the next node into the list (Figure 3-2).

Figure 3-2. Linked list

Compared to arrays, add and remove operations are easier because no shifting
is required. Removing an item from the list can be performed by changing the
pointer of the element prior to the one that needs to be removed. Time
complexity is still O(n) in the worst case. Indeed, in order to find the item that
needs to be removed, it is required to navigate the entire list up to the
searched element. The worst case happens when the removal needs to be
done on the last element into the list. Often linked lists serve well as underlying
implementation of other data structures including stacks and queues.

 Doubly Linked List
A doubly linked list is similar to regular linked lists, but each node stores a
pointer to the previous node in the list (Figure 3-3).

Implementing Effective Code Reviews

32

Adding is slightly more complex than the previous type due to more pointers
to be updated. Add and remove operations still take O(n) due to sequential
access needed to locate the right node. In a figurative way, think about this
doubly linked list as the navigation bar into your Google search. You have the
current page (the node) and two links (pointers) to the previous and following
page. Another example is the command history. Suppose you are editing a
document. Each action you perform on the text (type text, erase, add image)
can be considered a node which is added to the list. If you click the undo
button, the list would move to the previous version of changes. Clicking redo
would push you forward one action into the list.

 Stack
A stack is a collection of elements that is managed with last in, first out
(LIFO) policy (Figure 3-4). A LIFO policy is such that the last element added
to the data structure is the first element to be read or removed. A stack can
be implemented either with arrays or linked lists.

Figure 3-3. Doubly linked list

Figure 3-4. Stack

Chapter 3 | Data Structures

33

It provides three main methods:

 1. Top(): Which returns the element on top of the stack

 2. Pop(): Which removes the element on top and returns it

 3. Put(): Which adds a new element on top of the stack

It suits well certain categories of problems including pattern validation (e.g.,
well-parenthesized expressions) as well as general parsing problems due to
the LIFO policy.

 Queue
A queue is a collection of elements that is managed with first in, first out
(FIFO) policy (Figure 3-5). A FIFO policy is such that the first element added
to the data structure is also the first element read or removed. Similar to
stacks, it can be implemented either with arrays or linked lists.

Figure 3-5. Queue

It provides three main methods:

 1. Peak(): Which returns the first element in the queue

 2. Remove(): Which removes the first element and returns it

 3. Add(): Which adds a new element at the end of the queue

Queues are commonly used in concurrent scenarios, where several tasks
need to be processed or for messaging management. Generally, queues can be
used when order preservation is needed, hence problems that benefit from a
FIFO approach. As an example, queues see common usage in cases where
asynchronous messages are sent to a single point from different sources to a
single processing point. In this scenario, queues are used for synchronization
purposes. A real-world case of queue utilization is a printer, both shared
(e.g., office printer) and personal. In both cases, multiple file can be sent

Implementing Effective Code Reviews

34

simultaneously to the printer. However, the printer will queue them depending
on arrival and will serve them in arrival time order (the first file to arrive is
the first file to be printed).

 Hash Map
Hash maps store data as (key, values) pairs (Figure 3-6). Main operations
(insert, delete, and lookup) run in O(1) time in the average case.

Figure 3-6. Hash map

As the name of this data structures expresses, keys are stored in locations
(also referred to as slots) based on their hash code. Upon insertion, a hash
function is applied to the key, producing the hash code. Hash functions have
to map the same key into the same hash code. However, it might also happen
that two different keys correspond to the same hash code, hence resulting in
a collision. A good hash function is meant to minimize collisions.

The runtime strictly depends on the strength of the hash function to uniformly
spread objects across the bucket (generally represented as an array of keys).

Being pragmatic, hash maps have really good performances in real-world
scenarios. An example of utilization is the phone agenda. Indeed, for every
friend you have (keys), a phone number is attached to it (values). Every time
you want to call a specific friend, you perform a search (lookout) of their
name (key) and you get the relative phone number (value).

A common error that can happen when using this data structure is trying to
modify the key element into the data structure. In such case, it might be that
this data structure does not suit the problem you are trying to solve.

As an example, consider the following hash map:

names = {"Harry": "Potter"}

Chapter 3 | Data Structures

35

If instead of maintaining the key stable (i.e., Harry) and just updating the value
of the entry (i.e., from Potter to a different surname), you are trying to imagine
this data structure as being able to change the same entry into “James Potter,”
you probably need to better think the problem and use a different data structure.

 Binary Search Trees
Trees are other fairly commonly used data structures. A tree is a collection of
elements, where each element has a value and an arbitrary number of
pointers to other nodes (namely, children).

They are organized in a top-down fashion, meaning that pointers usually link
nodes up to bottom and each node has a single pointer referencing to it. The
first node in this data structure is called the root of the tree. Nodes with no
children are the leaves of the tree. The leaves of the tree are also referred to
as the frontier of the tree.

Figure 3-7. Tree

Figure 3-7 shows an example of tree, where the top node (root) has two child
nodes. The left child in turn has three children, while the root’s right has only one.

Trees are used every time we need to represent a hierarchical organization.
Several use cases require a particular type of tree: binary tree. In this case,
each node has at most two children, namely, left and right. Even more

Implementing Effective Code Reviews

36

specifically, its ordered version is even more interesting: the binary search
tree is used. Each node in the tree is maintained in such a way that, for each
node,

•	 The left child’s value is less than or equal to the node’s
value.

•	 The right child’s value is greater than or equal to the
node’s value.

The main benefit of this type of tree is that it enables a fast element search.
Indeed, due to the ordering, each time half of the tree is excluded from the
search (in the average case). As a consequence, binary search trees see sorting
problems as one of their main applications.

In general, problems that can be easily solved recursively can benefit from
trees. In real-world use case, trees can be used to represent any decision-
making progress. For example, suppose you have to decide whether to go to
the cinema today or not. A possible representation of the decision-making
process is in Figure 3-8.

Figure 3-8. Example of decision making using a tree representation

Chapter 3 | Data Structures

37

Every node in the example represents incrementally (top to bottom)
alternatives at hand. By walking down the tree, indeed, you might decide that
you are not going to the cinema, hence staying at home, and that you will
watch TV, specifically Game of Thrones.

 ■ Spoiler Alert Options other than “Read this book” are an act of kindness from the author.

Hope you are enjoying it so far!

 Guidelines on Data Structures
Picking the appropriate data structure will become an innate capability as you
keep developing code and as you expand your knowledge on the topic.

The following are some of the key drivers that can help you in navigating the
options available:

 1. Operations: Always start from the problem you are
trying to solve. Which operations do you need to
perform? Traversal? Search? Simple addition and removal?
Do you need to be able to gather minimum or maximum
of a given dataset?

 2. Ordering and sorting: Does your data scream for
prioritization or any type of sorting of elements? FIFO?
LIFO? Does the order need to be preserved? Does the
data structure need to automatically handle data sorting?

 3. Uniqueness: Does your data require elements into the
data structure to appear only once? There are data
structures like sets that allow you to reflect uniqueness
conditions.

 4. Relationship between elements: Does the data fit a
hierarchical logical representation? Is the data more
linear in nature? Do you need to logically group elements
in a more complex way? This is the case, for example,
where for each document, you want to be able to track
for each word the number of occurrences of that word.

Implementing Effective Code Reviews

38

 5. Memory and time performances: As we seen in this
chapter, every data structure has its own memory and
time performances. The algorithms you are building on
top of the data structure are heavily influenced by the
performances of the operations you perform on data.
The performance requirements you want to achieve are
another key driver for exploring and filtering which data
structure suits your needs.

 6. Complexity: If more than one data structure after all
the filtering looks like a fit for purpose, opt for the most
simple one.

By applying these criteria, you should be able to both better understand the
problem and filter out data structures that do not suit your data and the
context it is used in.

 Design Use Case
Let’s analyze the example from the stack section: analyzing a sequence to
ensure it is well parenthesized. In other words, we want to check that [()]()
[()] is a correct way of using parenthesis, while [()](is not. And we want to
pick the right data structure that supports the problem we are trying to solve.

Based on the drivers, we can see that

 1. We do not need complex operation: insertion and
removal are all we need.

 2. It requires order preservation but no sorting capabilities.

 3. Elements are not unique.

 4. The problem is linear.

 5. The problem can be solved in linear time and memory.

And there is one data structure that suits the needs which is, as anticipated,
the stack.

By being one of the simplest data structures available, we can also conclude
that stacks are appropriate since we cannot simplify further given the
requirements of the problem at hand.

Chapter 3 | Data Structures

39

 Evaluation and Review
The same driving criteria can and should be applied during reviews. Let’s
consider the example of counting occurrences of a given word in a text. In
other words

I love data structures. I promise that I will carefully consider them in my code
reviews.

has an output

I: 3, love: 1, data: 1, structures: 1, promise: 1, that: 1, will: 1, carefully:1,
consider: 1, them: 1, in: 1, my:1, code: 1, reviews:1.

The solution you find in the code is to save the sentence as an array:

sentence = ["I", "love", "data", "structures", "I", "promise", "that", "I",
"will", "carefully", "consider", "them", "in", "my", "code", "reviews"]

and a list for storing the counting of occurrences:

occurrences=[]

A simple algorithm would be

 1. For every word in the array (left to right)

a. Initialize the relative element in the occurrences list
with 1

b. Scan the remaining array

c. Every time the same word is found, update the
relative entry into the occurrences list (i.e., increment
of one)

d. Move to the next element (i.e., word) into the
sentence array

Since for every word (n elements), we have to scan the remainder of the array
(of size n), the time complexity is O(n2).

If we analyze the root problem a bit more carefully, we can quickly figure out
that the main problem we are trying to solve is a search operation. This is our
first red flag: arrays can be used but are not notoriously known for their
search capabilities.

Ordering and sorting are not key elements in our problem: no matter what
the order is, the result is not impacted by it. Arrays are okay in this regard.

The data is linear in nature, so arrays might fit.

Implementing Effective Code Reviews

40

Relationships between elements are our second red flag: we are using two
separate data structures, but there is a strict relationship between each word
in the sentence and relative counting.

Performance is another red flag; we don’t really like linear problems with
polynomial time, don’t we?

Finally, we may assert that there is nothing more simple than arrays. And that
would be true. This is a clear case where we might need to evaluate adding a
tiny bit of complexity to get rid of the red flags. If well designed, the solution
should not have been made that far.

And the king of optimized search able to express coupling relationship
between elements is our dear hash map.

You can now implement changes accordingly. Interestingly enough, if you
compare both solutions, the one using hash maps is also simpler and more
readable.

 ■ Heads Up The same approach can be applied to any programming interview you will face.

More often than not, they do require implementing some sort of algorithm around data structure.

 Summary
This chapter on data structures is not meant to be a data structure book. It
aimed at doing a quick refresh on those you’ll end up using more often than
not. At the end of the day, reviewing data structures is all about fit for purpose,
not overcomplicating the code and considering the appropriate one in terms
of memory and time performances.

Some rules of thumb when evaluating which data structure to use are

 1. If you are trying to force the data structure to do
operations that are not natively supported, it might not
be the right one for your purpose.

 2. Even if the choice of data structure is surely related to
the current problem you are trying to solve (e.g., data
size), have a vision for possible growth and how it might
impact the software.

 3. Use the 80/20 Pareto principle to help you choose the
best data structure.

Chapter 3 | Data Structures

41

 4. Don’t opt for fancy data structures just for the sake of
it. More complex data structure still requires some more
memory management and processing. Always strive for a
balance between scalability requirements and complexity.
Simple is better, but it needs to get the job done.

In the next chapter, we will tackle code smells, what they are, and why they
are bad for clean code and provide guidance on how to spot them in your
software.

 Further Reading
I love data structures. And amazing books are out there that dig deeper into
various data structures and algorithms in general. At the top of my list is
Introduction to Algorithms by Thomas H. Cormen (MIT Press, 2009). It is a
must-read if you haven’t read it yet.

 Code Review Checklist
 1. Are data structures appropriately used?

 2. Is the data structure appropriate based on the data size
the code is dealing with?

 3. Are potential changes to data size considered and
handled?

 4. Is the data structured forced to do operations not
natively supported?

 5. Does the data structure support growth (i.e., scalability)?

 6. Does the data structure reflect the need for relationships
between elements?

 7. Does the data structure optimally support the operations
you need to perform on it?

 8. Is the choice of a specific data structure overcomplicating
the code?

 9. Is the data structure chosen based on most frequent
operations to be performed on data?

 10. Are you using stacks for problems that do not require
FIFO?

Implementing Effective Code Reviews

42

 11. Are you using queues for problems that do not require
LIFO?

 12. Does the data structure reflect any ordering on sorting
requirements?

 13. From a logical perspective, is the code meant to update
the key within a hash map? If so, rethink the problem
and see if hash maps are the best data structure to deal
with it.

Chapter 3 | Data Structures

	Chapter 3: Data Structures
	Introduction to Data Structures
	Array
	Linked List
	Doubly Linked List
	Stack
	Queue
	Hash Map
	Binary Search Trees
	Guidelines on Data Structures
	Design Use Case
	Evaluation and Review

	Summary
	Further Reading
	Code Review Checklist

